NTRU Key Exchange

based on a posting of Lars Luthman
on the Cryptography mailinglist on 05/17/2014

The search for a Post-Quantum Diffie-Hellman replacement



Diffie-Hellman

Alice
generate a,g,p
A=g"d mod p
send(g,p,A)

get(B)
K=B”a mod p

Bob
generate b

get(g,p.A)
B=g”b mod p
send(B)
K=A”b mod p



NTRU Key Exchange

Alice

PubA, privA, randA
send(pubA)
get(pubB)
eA=enc(rA,pubB)
send(eA)

get(eB)
rB=dec(eB,privA)
K=hash(rA,rB)

Bob
pubB,privB,randB
send(pubB)
get(pubA)
eB=enc(rB,pubB)
send(eB)

get(eA)
rA=dec(eA,privB)
K=hash(rA,rB)



Requirements

* K cannot be computed with the knowledge
of all sent data

— Fulfilled, since only pubA, pubB, eA and eB
are sent, given that the public-key encryption
IS Secure

* None of the parties can choose the

resulting key by choosing the input

parameters (your communication peer

cannot force you to communicate with a

bad key)



Randomness

* The security of Random Number
Generators is a tough problem
— It is impossible to proof that any given random
number generator is secure
* The history of broken random number
generators is long

— Therefore it has to be assumed that any given
Random Number Generator might be
Insecure, resulting in insecure keys



Requirements

One important requirement for a Key
Exchange algorithm is that

If any of the parties follows the protocol

and at least one of the parties has a good
random number generator

that the party can trust that the resulting
key will be secure



If you follow the protocol

you will get a secure key EVEN IF your
own random number generator is broken

or if the random number generator of the
other party is broken

And even if both random number
generators are partly broken, there is a
chance that you will get a secure key



Potential problems

* In the original DH algorithm, Alice leaks
the randomness that was used to generate

g and p to a passive attacker. Bob does
not leak any randomness.

* NTRU key exchange does not leak
random numbers to a passive attacker

* In NTRU Key exchange, an active attacker

can get rA from Alice and rB from Bob
leaked.



Hash security and Race
condition

* |t was suggested that XOR could be a
sufficient Hash algorithm

* But there is a race condition between Alice
and Bob.

* |f Bob sends eB before Alice sends eA,

then Alice can decrypt rB, and
generate/choose rA, which would then be

hashed together with rB



Race condition

* |f Alice would set rA to rB, then in the case
of XOR, this would result in

e Ki=rAxrB=0

* The original DH algorithm does not have
such a weakness



Potential solutions

* A strong hash algorithm (SHA-384) should
be used, preferrably in a HMAC way.

* Alice and Bob should do a Bit-commitment
of rA and rB and send that together with
the initial pubA and pubB handshake.



Another problem

* It could be argued that Diffie-Hellman itself
IS not an encryption algorithm

* But for this Key-Agreement protocol, we
need an encryption algorithm.

* Some people unfortunately don't like
encryption algorithms



Performance

* DH requires 2 communications:
- 1.A->B: g,p,A B knows K
—2.A<-B:B A knows K

* NTRU Key Exchange requires 3
communications:

— 1. A->B: pubA
— 2. A<-B: pubB, eB A knows K
— 3. A->B: eA B knows K

— This means likely more latency



Alternatives

* NTRU-KE: A Lattice-based Public Key
Exchange Protocol
— by Xinyu Lei and Xiaofeng Liao
— https://eprint.iacr.org/2013/718.pdf



https://eprint.iacr.org/2013/718.pdf
https://eprint.iacr.org/2013/718.pdf
https://eprint.iacr.org/2013/718.pdf

Similarities with NTRU-KE

— it comes to the same conclusion that 3
messages are necessary due to the public
key structure of NTRU



Advantages of NTRU KE

* NTRU KE might be a bit more efficient
than this proposal



Advantages of NTRU Key

Exchange

* NTRU KE invents ist own NTRU-ENCRYPT
inversion problem and NTRU-ENCRYPT
assumption, which are not necessary here

* NTRU Key Exchange reuses the security
properties of NTRU and can also easily be used
with different Public Key Encryption algorithms
instead of NTRU.

* NTRU KE is more complex and likely needs
more complex code



	Folie 1
	Diffie-Hellman
	NTRU Key Exchange
	Requirements
	Randomness
	Requirements
	Folie 7
	Potential problems
	Hash security and Race condition
	Race condition
	Potential solutions
	Another problem
	Performance
	Alternatives
	Similarities with NTRU-KE
	Advantages of NTRU KE
	Advantages of NTRU Key Exchange

