
NTRU Key Exchange

based on a posting of Lars Luthman 
on the Cryptography mailinglist on 05/17/2014

The search for a Post-Quantum Diffie-Hellman replacement



Diffie-Hellman

• Alice
• generate a,g,p
• A=g^d mod p
• send(g,p,A)

• get(B)
• K=B^a mod p

• Bob
• generate b

• get(g,p,A)
• B=g^b mod p
• send(B)
• K=A^b mod p



NTRU Key Exchange

• Alice
• pubA, privA, randA
• send(pubA)
• get(pubB)
• eA=enc(rA,pubB)
• send(eA)
• get(eB)
• rB=dec(eB,privA)
• K=hash(rA,rB)

• Bob
• pubB,privB,randB
• send(pubB)
• get(pubA)
• eB=enc(rB,pubB)
• send(eB)
• get(eA)
• rA=dec(eA,privB)
• K=hash(rA,rB)



Requirements

• K cannot be computed with the knowledge 
of all sent data
– Fulfilled, since only pubA, pubB, eA and eB 

are sent, given that the public-key encryption 
is secure

• None of the parties can choose the 
resulting key by choosing the input 
parameters (your communication peer 
cannot force you to communicate with a 
bad key)



Randomness

• The security of Random Number 
Generators is a tough problem
– It is impossible to proof that any given random 

number generator is secure

• The history of broken random number 
generators is long
– Therefore it has to be assumed that any given 

Random Number Generator might be 
insecure, resulting in insecure keys



Requirements

• One important requirement for a Key 
Exchange algorithm is that 

• if any of the parties follows the protocol
• and at least one of the parties has a good 

random number generator
• that the party can trust that the resulting 

key will be secure 



• If you follow the protocol
• you will get a secure key EVEN IF your 

own random number generator is broken
• or if the random number generator of the 

other party is broken
• And even if both random number 

generators are partly broken, there is a 
chance that you will get a secure key



Potential problems

• In the original DH algorithm, Alice leaks 
the randomness that was used to generate 
g and p to a passive attacker. Bob does 
not leak any randomness.

• NTRU key exchange does not leak 
random numbers to a passive attacker

• In NTRU Key exchange, an active attacker 
can get rA from Alice and rB from Bob 
leaked.



Hash security and Race 
condition

• It was suggested that XOR could be a 
sufficient Hash algorithm

• But there is a race condition between Alice 
and Bob.

• If Bob sends eB before Alice sends eA, 
then Alice can decrypt rB, and 
generate/choose rA, which would then be 
hashed together with rB



Race condition

• If Alice would set rA to rB, then in the case 
of XOR, this would result in 

• K:=rA x rB = 0

• The original DH algorithm does not have 
such a weakness



Potential solutions

• A strong hash algorithm (SHA-384) should 
be used, preferrably in a HMAC way.

• Alice and Bob should do a Bit-commitment 
of rA and rB and send that together with 
the initial pubA and pubB handshake.



Another problem

• It could be argued that Diffie-Hellman itself 
is not an encryption algorithm

• But for this Key-Agreement protocol, we 
need an encryption algorithm.

• Some people unfortunately don´t like 
encryption algorithms



Performance

• DH requires 2 communications:
– 1. A->B: g,p,A B knows K
– 2. A<-B: B A knows K

• NTRU Key Exchange requires 3 
communications:
– 1. A->B: pubA
– 2. A<-B: pubB, eB A knows K
– 3. A->B: eA B knows K
– This means likely more latency



Alternatives

• NTRU-KE: A Lattice-based Public Key 
Exchange Protocol
– by Xinyu Lei and Xiaofeng Liao
– https://eprint.iacr.org/2013/718.pdf 

https://eprint.iacr.org/2013/718.pdf
https://eprint.iacr.org/2013/718.pdf
https://eprint.iacr.org/2013/718.pdf


Similarities with NTRU-KE

– it comes to the same conclusion that 3 
messages are necessary due to the public 
key structure of NTRU



Advantages of NTRU KE

• NTRU KE might be a bit more efficient 
than this proposal



Advantages of NTRU Key 
Exchange

• NTRU KE invents ist own NTRU-ENCRYPT 
inversion problem and NTRU-ENCRYPT 
assumption, which are not necessary here

• NTRU Key Exchange reuses the security 
properties of NTRU and can also easily be used 
with different Public Key Encryption algorithms 
instead of NTRU.

• NTRU KE is more complex and likely needs 
more complex code


	Folie 1
	Diffie-Hellman
	NTRU Key Exchange
	Requirements
	Randomness
	Requirements
	Folie 7
	Potential problems
	Hash security and Race condition
	Race condition
	Potential solutions
	Another problem
	Performance
	Alternatives
	Similarities with NTRU-KE
	Advantages of NTRU KE
	Advantages of NTRU Key Exchange

