Some Recent Research Aspects of Threshold
Cryptography

Yvo Desmedt*

Department of Electrical Engineering and Computer Science, and
the Center of Cryptography, Computer and Network Security
University of Wisconsin—-Milwaukee
PO Box 784, Milwaukee, WI 53201, U.S.A.

e-mail: desmedt@cs.uwm.edu

Department of Mathematics
Royal Holloway
University of London
U.K.

Abstract. In the traditional scenario in cryptography there is one sender,
one receiver and an active or passive eavesdropper who is an opponent.

Depending from the application the sender or the receiver (or both)

need to use a secret key. Often we are not dealing with an individual

sender /receiver, but the sender/receiver is an organization. The goal of
threshold cryptography is to present practical schemes to solve such prob-

lems without the need to use the more general methods of mental games.

In this paper we survey some recent research results on this topic. In

particular on: DSS based threshold signatures, robust threshold cryp-

tography, threshold cryptography without a trusted dealer, more optimal

secret sharing schemes for threshold cryptography, proactive threshold
cryptography and its generalizations.

1 Introduction

Public key [31] allows any sender to send private data to a known receiver (or to
a receiver whose public key is authentic [58]). A public key system can also be
used to digitally sign documents. Any receiver who knows the authentic public
key of the sender can check whether data originated from the sender, or that
it was created or modified by an outsider. Conventional cryptography achieves
similar properties in a weaker sense [55, 64].

Traditionally, cryptography considers the case where there is one sender and
one receiver. However, a lot of communication is between an individual and an
organization, e.g., a company, a governmental agency, a non-profit organization,
etc. Examples are utility bills, tax forms, newsletters from professional organi-
zations, etc. Organizations need also to communicate to each other. Moreover,

* A part of this work has been supported by NSF Grant NCR-9508528, the E.P.S.R.C.
and by CNR AI n.94.00011.

many, and certainly security related, actions are taken by a group of people
instead of by an individual. Indeed, the authority to sign a document is often
not in the hands of a single person. In a bank wholesale transactions need to
be signed by two co-signers. In the parliament (house) it is not the speaker who
votes on a proposal for a new law, but a majority and this is also true in other
democratic institutes (e.g., a board of directors).

So there is a need for guaranteeing the authenticity of messages sent by a
group of individuals to another group (or person) and this without enormous
expansion of keys and/or messages. One often knows an organization (and its
public key), but not necessarily who works in this organization or even less who
has the power to sign in the name of the organization. So, to avoid a key man-
agement problem and to allow distribution of power an organization should have
mainly one public key, instead of relying on the many public keys of the indi-
viduals inside that organization, who are unknown to the outside world. If the
organization has one public key, the power to sign (or to decrypt, or to use a
cryptosystem) should then be shared, to avoid abuse and to guarantee reliability.
In our mechanical society such properties are often achieved. The goal of thresh-
old cryptography is to make this possible in an electronic society. It combines
threshold schemes [7,62] (or secret sharing schemes [46]) with cryptography.

In this paper, we first discuss some of the first attempts to address the afore-
mentioned issues, see Section 2. We then give a brief survey of some basic schemes
that achieve this goal, see Section 3. Recent research results are briefly surveyed
in Section 4. Finally in Section 5 we give some further details.

2 Early attempts

Shamir [62] was the first to discuss that a company’s secret key, used to digitally
sign documents, should not be given to a single entity. He noted that:

Consider, for example, a company that digitally signs all checks (see RSA
...). If each executive is given a copy of the company’s secret signature
key, the system is convenient but easy to misuse. If the cooperation of
all the company’s executives is necessary in order to sign each check,
the system is safe but inconvenient. The standard solution requires at
least three signatures per check, and it is easy to implement with a (3,n)
threshold scheme. Each executive is given a small magnetic card with
one D, piece, and the company’s signature generating device accepts
any three of them in order to generate (and later destroy) a temporary
copy of the actual signature key D. The device does not contain any
secret information and thus need not be protected against inspection.
An unfaithful executive must have at least two accomplices in order to
forge the company’s signature in this scheme.

The solution suffers from many problems, the company’s signature generating
device can:

— leak the master key,

— modify the message being signed (indeed the co-signers have no control over
the message that is allegedly being signed), and

— sign extra messages.

So full trust is necessary in the manufacturer of the device and the one who
operates it. So this solution is not very secure.

The fact that sometimes a ciphertext needs to be decrypted jointly by a
group of users, instead of by a single user, was addressed in [17] and later in [26].
The first solution presented is not very secure and the second one is far from
practical since it relies on mental games (general secure distributed computation)
mechanisms [43,4,13].

3 Basic schemes

In this section, for simplicity, we mainly follow the description used in [19], and
discuss a generalization of it in Section 4.4.

A cryptosystem corresponds to evaluate a function with two inputs. One of
them is the key, and the other one varies from application to application, exam-
ples being: the plaintext, the ciphertext, the text to sign, a seed, etc. Often this
function is written as having one input with a key as parameter, e.g., fiey (input).
In our context it is useful to view that input as a parameter, so that we have

fkey (iHPUt) = Jinput (key)a (1)

where f and g are functions.
Some important cryptographic schemes have the property that a function g,
playing a major component, is homomorphic [47], i.e.,

go(k1 + k2) = go (k1) * go(k2), (2)

where b is the aforementioned input, and ki, ks belong to the key space. As
a first example consider the ElGamal encryption scheme [32]. First the public
key is (g,y,p) where g has a large enough order, p is a large enough prime,
y = ¢° mod p, and a is the secret key. The ciphertext is (c1,c2) = (¢g* mod p, M -
y* mod p), where M € Z, is the message. Now, a major component is the
computation of g., (a) = ¢ mod p, since, given ¢y, it allows the computation of
the plaintext M [21]. As a second example we consider RSA signature generation
and decryption. When signing or decrypting one computes g,(d) = b¢ mod n,
where b is the (hashed and processed) text to sign or respectively the ciphertext,
d is the secret key and n is the public modulus, i.e., the product of two primes.
Now Shamir’s secret sharing scheme [62] satisfies the property that:

key = 3 (constant,) - Ghey) ®
i€EB

where B is a subset of the set of all participants, called A, and |B| = t, the
threshold. So, if Shamir’s secret sharing scheme is used and g is homomorphic
we obtain, using (3) and (2) that

Ginput(k€Y) = Ginput (Z(Constanti,B) . (sharei)> @
icB
= H ginput (ConSta’nti,B . Sharei)
icB
= H (ginput(Sharei))c"“s'ﬂanti,a] (5)
i€B

So, in (5) ginput(share;) can be evaluated by the shareholder and sent together
with his identity (i.e., 7) to a reliable combiner. If enough shareholders responded,
the combiner, knowing the identities, can compute a set B’ which cardinality
must be at least as large as the threshold ¢, i.e., | B'| > t. The combiner chooses a
B C B’ such that |B| = t, computes constant; g for all ¢ € B and then evaluates
(5).

Originally ginput(share;) was called the partial result, but now one also refers
to it as partial signature, partial decryption, etc., depending from the context.

Let us now discuss the security aspects. The combiner needs to be reliable,
otherwise a fault tolerant implementation is required. If the final result of the
computation will be public (e.g., when signing), the combiner is allowed to re-
veal all the information he receives, otherwise (e.g., when decrypting ciphertext)
he cannot. The security goal is that the resulting scheme is as secure as the
original one. It should be observed that a cryptanalyst may now receive as extra
information:

— up to t — 1 shares, given by up to ¢t — 1 corrupted shareholders,
— up to [= |A] partial results, and this for each ginput, (key) that was revealed
to the cryptanalyst.

So the task of the cryptanalyst should be as hard regardless whether he received
this extra information or not. This is usually achieved by requiring that any ¢t —1
shares can be simulated (zero-knowledge [44]) and that the partial results can
be simulated when ginput, (key) is given (minimal-knowledge [39]).

It should be noted that Shamir’s original secret sharing scheme only works
over a finite field. However, the secret key in RSA belongs to Z(,)(+), which
is not a finite field. The additive property of (3) is desirable since it allows
one to obtain threshold cryptography as we explained in Equations (4)—(5). An
extension of Shamir’s secret sharing, presented in [25] works over any Abelian
group (by viewing the secret as belonging to an “extended” key space). The
equality:

Ginput (constant; p - share;) = (ginput(sharei))conStanti'B
should then be viewed as the multiplicative notation of a scalar operation in a
module [47] and not as an exponentiation. Other secret sharing schemes have

been presented to satisfy (3), as will be surveyed in Section 4.3 and discussed
in more details in Section 5.2. Finally, ¢(n) must remain secret, which implies
that the shareholders should not know Zg(,). The reader interested in detailed
descriptions of how these technical issues in these basic schemes have been solved
can consult [10,9,33,29,22, 34, 19].

4 Recent research: a brief survey

For several cryptoschemes and applications one has developed threshold crypto
variants, such as threshold zero-knowledge proofs, threshold pseudorandom gen-
erators, etc. The concept of threshold cryptography has also been extended to
general access structures [46], so that the subsets of A (the set of the partici-
pants) authorized to jointly use the cryptoscheme are not necessarily specified
by a threshold. Note that the security of these schemes varies. One has un-
conditionally secure schemes, proven secure (under a computational complexity
assumption) ones, some are (proven) as secure as the original cryptoscheme, and
finally some threshold cryptoschemes have heuristic security. We refer the reader
to [24] for a survey of research done by 1994 on these topics. While that survey
was very general, we restrict ourselves to discuss only a few topics and discuss
threshold cryptography in a more narrow context. So, for example, we will not
discuss group signatures [14]. We refer the reader interested in that topic to [12].
Recent research has mainly focused on:

1. reliability. Threshold cryptoschemes that are reliable are called robust and
we briefly discuss those in Sections 4.1 and 5.3.
2. security enhancements, such as:
(a) no trusted dealer (see Sections 4.2 and 5.4).
(b) proactive security and its generalization (see Sections 4.2 and Sec-
tion 5.5).
(c) insiders’ anonymity (see Section 4.2).
3. efficiency, as discussed in Sections 4.3 and 5.2.
4. generalizations, such as
(a) threshold DSS (see Sections 4.4).
(b) abstraction, (see Section 4.4).

We now briefly survey these issues.

4.1 Reliability

To analyze the reliability aspect, let us focus on (5). It is clear that if one (or
more) shareholder sends one wrong partial result, ginput(share;) the result will
(likely) be wrong. If a public key system is used, one can using the public key
verify that the result is wrong. When the numbers of wrong partial results is
small, and a public key system is used, an exhaustive search will evidently find
out who sent the wrong partial result [61]. One can then recompute the result

ginput (key) ignoring the wrong partial results, provided one has at least t + e
partial results, where e is the number of wrong ones.

Recent research has focused on the computation of ginpus(key) without an
exhaustive search [28,42,37,41].

4.2 Security enhancements

Several security enhancements have been proposed, which we now briefly discuss.

No trusted dealer One can wonder who computes the share of a participant.
In the first schemes a single trusted dealer was often used. It is clear that such
an approach can best be avoided, however this is not always that easy. We refer
the reader to [57,42,8,16] and to Section 5.4 for some details.

Proactive security and its generalizations One can wonder what should
happen when a share is stolen or lost. Worse, what happens when an outsider
collects more shares than the threshold? As already observed in [26], it is a
bad idea to change the public key of a group, in particular when this group is
well known. Those who have not updated their public key database will use the
old one. Also the new public key must be certified enough times independently
before it can be trusted.

The solution that has been proposed to address this problem is to get new
guaranteed correct shares without relying on a trusted dealer and to keep the old
public key as long as is reasonable possible. The old shares should be destroyed
and the update should be done frequently enough, taken the power of the enemy
who may collect shares into account.

The following is a more general problem. How given shares for authorized
subsets of the participants in A, specified by an access structure I'4, can one,
without a dealer, distribute new shares for an access structure I'},, where A’ is
the new set of participants. If I'y & I}y, it is clear that some shareholders must
destroy their shares.

The concept of proactive secret sharing is based on [56] and its combination
with threshold cryptography has been studied in [45, 36, 59]. The generalization
has been studied independently in [23] and [35]. Prior work on redistributing
secret shares was done outside the scope of threshold cryptography, as can be
found in [15,2].

Insiders’ anonymity An outsider, not receiving the help of insiders nor of
the combiner, sees only ginput(key), and therefore is unable to find out who was
active in the computation as observed in [19]. However, insiders and the combiner
may (e.g., in threshold signatures) see ginput(share;) and i. Therefore they may
find out who the active insiders are. In voting, for example, this is not desired
and one needs to guarantee the anonymity of the insiders. A first solution has
been proposed in [40]. Note that the opposite problem, the one of tracing who

was involved, was already studied in [52] and that this problem can usually be
solved in robust threshold cryptosystems.

4.3 Efficiency

For several unconditionally secure threshold authentication schemes, e.g., [30]
and for ElGamal based threshold decryption [21] each share is as long as the
key. However, when one uses the extended Shamir’s secret sharing scheme [25]
for threshold RSA one has:

I+ length(key) < length(share;) < 2 [* length(key),

where [is the number of shareholders. (Note that when ¢ = [one has that
length(share;) = length(key) [10,33]). Secret sharing schemes have been devel-
oped that allow more efficient threshold RSA schemes. Two approaches have
been followed: the one is guaranteed to work, while the other one is likely to
work. In the last approach it is possible that although a certain set of partici-
pants has a cardinality larger or equal to ¢, they will not be able to perform the
threshold computation in (5). We refer the reader to 20,1, 6,49].

4.4 Generalizations

g is not homomorphic What if the function g is not homomorphic? This
problem in its generality corresponds with the mental games problem [43,4, 13].
In its generality no practical solution has been proposed to address this problem.
For some algorithms, such as DSS, a practical approach may be desirable. This
was studied in [50, 42]. It should be noted that, even for the non-robust schemes,
there is a significant difference between those solutions and the RSA solution.
In threshold RSA, if one trusts ¢ shareholders (or more), but not ¢ — 1 (or less),
t (non-faulty) shareholders are sufficient to jointly compute the result. However,
in the threshold DSS schemes more than ¢ are required to co-sign. In fact, in
the Gennaro-Jarecki-Krawczyk-Rabin scheme at least 2t — 1 participants are
required, which implies that if [is even and t corresponds to majority, (i.e.,
[1/2] + 1) no practical threshold DSS signature scheme has been presented so
far.

Abstraction One can wonder whether there is a need that g is a homomor-
phism. More general approaches have been discussed in [3]. We briefly focus on
one of those (see also [11]).

Suppose that shareholders of a key want to compute ginput (key) in a practical
distributed way. This is, for example, possible if there exist a recomputation
function i’ and functions ¢’ such that

Jinput (key) = 77l (gilnput(Sha’rei1)7 s 7gilnput (Sha‘reit)) .

5 Some details

It is clear that seeing the large number of papers that have appeared on threshold
cryptography, that a book is needed to profoundly cover the aforementioned
subtopics. To avoid giving no details whatsoever, a few topics will be chosen
and discussed in some depth. We do no longer order the subtopics as we did in
Section 4.

We first remind the reader when a secret sharing scheme is called homomor-
phic [5].

5.1 Homomorphic secret sharing

Let (s1, S2,- - -, §;) be a share assignment of the key k and similarly (s, s5, ..., s])
be the shares of the key &’. Assume operations, denoted using “+”, are defined
on the share spaces and the key space. A secret sharing scheme is called homo-
morphic [5] if ((s1 +5}), (s2+85),...,(s1 +s})) is a possible share assignment of
the key k + k. Shamir secret sharing scheme is homomorphic. In fact any secret
sharing scheme satisfying (3) in which the shares belong to a module [47] (an
Abelian group with scalars belonging to a ring), the constant; p are scalars, and
the keys belong to a submodule, is homomorphic, as is easy to verify.

5.2 More efficient schemes

As we surveyed in Section 4.3, the problem of making more efficient secret shar-
ing schemes useful for threshold cryptography is in particular important for
threshold RSA.

We only discuss here a variant for ¢ = 2 of a scheme given in [20] and then
generalize it using Kurosawa-Stinson interpretation of the scheme given in [6].
We use the occasion to explain how to use these schemes for threshold RSA.

We first explain the case t = 2.

An example Let | be the number of participants. Let K(+) be a group and
k € K be the secret. We number the participants ¢ from 0 till [— 1 and represent
i in binary representation, i.e., i corresponds to the bits (iy,. .., i10g,(1)])-

When creating shares, the dealer will choose [log,(!)] independent uniformly
random elements 7. € K (1 < ¢ < [logy({)]). Through a secure channel partic-
ipant ¢ receives as sub-share s; . = r. when ¢ = 0 and otherwise s; . = kK —r..
So, a participant 7 receives [log,(l)] sub-shares.

We now discuss how ¢ and j can reconstruct the key. If 4 # 7 then in their
binary representation there will be at least one column ¢ in which they differ,
i.e., ic # je. Assume that i. = 0, then k = s;. + ;.. If the group K(+) is
Abelian, then the scheme is homomorphic and the reconstruction works regard-
less whether i. = 0 or not.

Now we explain how to use this scheme for threshold RSA [20]. Assume, as
in [19], that n is the product of primes of equal length!. The distributor chooses
the shares as we explained using K = Z(,)(4) and k = d. When co-signing,
assume that m is the hashed and processed message. Each participant ¢ sends
the number ¢ and the sub-partial signatures o; . = m®-< mod n for all c. Assume
that this was done by participants, let say ¢ and j. Giving correct shares, knowing
1 and 7, one can find a column ¢ where 7. # j. and compute the signature since
Oic % 0 = mficT%ic = md If participants i and j know in advance that they
will be co-signing, then they only need to send one o; . instead of [log,(l)] many.

Note that the shares in [20] are as long as in the variant we discussed here,
but that more randomness is required.

A generalization The 2-out-of-[previous scheme is based on [log,(I)] indepen-
dent 2-out-of-2 sharing schemes. The scheme in [6] satisfies a similar property.
This scheme inspired Kurosawa and Stinson and they gave a generalization we
now discuss [49].

Let A and A’ be finite sets, B a subset of A, [= |A| and I’ = |A'| and F
be a set of functions from A to A’. We assume that I’ < [. A function f from
A to A’ is a perfect hash for B if f restricted to B is one-to-one. F is a Perfect
Hash Family (1,1, t) if for all subsets B C A with cardinality ¢ there is at least
one function f in F such that f is a perfect hash for B. Note that the binary
representation defines such a Perfect Hash Family from the set A to A’ = {0,1}.

A Perfect Hash Family can now be used to construct new secret sharing
schemes from old ones. Suppose that one is given a t-out-of-I’ sharing scheme
and F, a Perfect Hash Family (,1’,¢). One can then construct a t-out-of-l secret
sharing scheme. Let us first discuss how to distribute shares. For each f € F, the
dealer uses the share generation algorithm of the t-out-of-/ sharing scheme pro-
ducing [shares s, for all o’ € A". If f(i) = f(j) = o' participant ¢ and j receive
as subshare s,-. The randomness used when distributing shares corresponding
to f is independent of the randomness utilized for the f’ iteration. The total
number of subshares is |F'| and the length of the share of a participant is the
sum of the length of his subshares.

When ¢ shareholders, let us say in B C A, want to reconstruct the secret, they
find which f € F'is a perfect hash for B and they use subshares corresponding
with that f. The reconstruction algorithm of the t-out-of-I’ is then used.

If the original t-out-of-I’ sharing scheme can be used for threshold RSA, then
so can the t-out-of-/ one.

5.3 Robustness

A simple example as an introduction We start by discussing an uncon-
ditionally secure threshold cryptosystem. In 1974 Gilbert, MacWilliams and
Sloane proposed the following authentication scheme. The sender and receiver

! Otherwise, work modulo ¢(n)|n?/é(n)| instead of modulo ¢(n), similar as in [34].

have a common a,b €g GF(q), which describes a secret line in the vectorspace
GF(q) x GF(q) of points with coordinates (x,y) satisfying the equation y =
a -z +b. (The original description of this scheme was over a projective space
instead of over a vector space.) To authenticate a message m € GF(q) the sender
sends the point (m, MAC) on the line, i.e. the Message Authentication Code is
MAC = a - m + b. The receiver accepts the received message m’ as authentic if
(m/,MAC') is on the secret line. If the secret is used only once the probability
of a successful impersonation or substitution attack if 1/gq.

If ¢ is a prime, then any homomorphic secret sharing scheme might be used
to transform this scheme into a threshold authentication one. Indeed, let s; be a
share of a and s be a share of b, then MAC; = m - s; + s} is a share of the MAC,
called a partial MAC [22,30,27]. If Shamir’s secret sharing scheme is used, as
in [30], this scheme is not robust.

Using the connection between threshold schemes and error-correcting codes [18,
54, 48] this scheme can easily be made robust. Indeed, let the shares of a, i.e.,
(s1,82,.--,81), and the shares of b, i.e., (s],85,...,5]), be chosen as codewords
in an appropriate linear code over GF(q). If this is a good error-correcting code,
then one can correct errors provided sufficiently many participants compute their
partial MAC, i.e., M AC;. For security purposes it is necessary that the scheme
is perfect and composite [5]. Perfectness means that ¢ — 1 shares do not reveal
anything about the key and compositeness that the revelation of all the shares
of k1 + ko, where k1 + ks € GF(q), does not reveal anything more about (ki, k2)
than what k; + ks does. Reed-Solomon error-correcting codes [60] codes satisfy
these properties when used as in [54].

Making threshold RSA robust From [54] it is rather obvious that the gen-
eralization of Shamir secret sharing scheme implies a generalization of Reed-
Solomon codes. It therefore seems that RSA could be made robust using this gen-
eralized Reed-Solomon code. However, when the number of errors is rather large,
no algorithm is known to locate the errors in this generalized Reed-Solomon code.
Note that it is easy to prove that if one could efficiently generalize the Berlekamp-
Massey algorithm [53] to work for this generalized Reed-Solomon code, that the
discrete log problem and factoring problem would both be easy [28]. Whether
there exists a polynomial-time algorithm to detect the error locations is still an
open problem. However, the problem need not to be addressed to obtain robust
threshold RSA.

The common method used to achieve robust RSA is to send more data and
to rely on the fact that RSA is a public key algorithm. If each of ¢ participants
proves that he has sent the correct partial result, then one can ignore all other
partial results. This implies that one only needs ¢ + e partial results, where e is
the number of incorrect partial results. Note that in the McEliece-Sarwate’s use
of Reed-Solomon codes one needs t + 2e shares to recompute the key. Several
methods have been developed (see Section 4.1) and we only discuss one of those.

Gennaro-Jarecki-Krawczyk-Rabin [41] developed two methods to achieve ro-
bust threshold RSA. One is interactive and the other one is non-interactive.

We discuss the non-interactive one which is based on the Gilbert-MacWilliams-
Sloane authentication scheme.

The scheme assumes that n = pq is the product of safe primes (a prime p
is safe if p = 2p' + 1 where p’ is a prime). To detect an error the combiner
will receive extra information a; ; and b;;, where ¢ indicates the participant
and j the subshare (see Section 5.2). In fact, for each subshare s;; the dealer
chooses uniformly random an a; ;, such that 1 < a;; < n° and an b;; such
that 1 < b;; < n'T%1%%2 where ¢; and J» are appropriately chosen [41]. The
dealer gives participant ¢ privately, the subshare s; ; and the integer y; ;, where
Yij = Gij - Si; + b;;, for all j. The dealer also gives the combiner privately
the integers a;; and b; ; for all ¢ and j. We trust that the combiner will keep
these values secret and that the combiner will perform the verifications we now
describe. Otherwise more combiners might be used as described in [41].

When co-signing participant ¢ computes the sub-partial signatures o; ; of m
and sub-mac Y; ; = m¥-i mod n for each j and send those to the combiner. We
now explain how the combiner can locate the correct partial signatures. To verify
whether it is correct the combiner verifies if

(04,5)*7 -m"7 =Y;,; mod n,

for all received o; ;. The combiner now uses these partial signatures for which
the verification was successful. Note that it is still possible that the correct sub-
partial signature is —o; ;. For all existing threshold RSA schemes this implies
that the actual signature may have to be multiplied by —1. Knowing e the

combiner can easily check whether this is necessary.

5.4 Avoiding a trusted dealer

If the secret key can be chosen randomly, as is usually the case in a discrete log
setting, then the following use of homomorphic secret sharing can be utilized
towards abolishing the need for a trusted dealer.

The first participant chooses a uniformly random key k; and plays distributor
of this key generating shares (s1,1,1,2,...,51,1). The first participant sends,
using a secure channel, the shares s;; to participant ¢ and 1 < ¢ < 1. Now, ¢
participants, let say those in B C A, will perform similar operations (choosing
the randomness independently) and create shares s;; instead of s1,; and send
those privately to participant 7. A participant ¢ can then compute the share
8=, jeB Sii- Since the sharing scheme is homomorphic, s; is a share of the
key k =3 cp kj. If the keys k; belong to an Abelian group (see also [38]) and
the secret sharing scheme is perfect, then ¢t — 1 shareholders have no information
about the secret key k.

The first use of this idea in the context of threshold cryptography was in [57].
Pedersen’s scheme also guarantees that the distribution is verifiable, i.e., that
the shares the shareholders received will always recompute the same secret key.
Pedersen’s scheme also guarantees that this secret key corresponds to the public
key that is made public.

Note that the problem of avoiding a trusted dealer is much more complex in
the context of RSA [8].

5.5 Proactive

We briefly explain how the use of homomorphic secret sharing is useful towards
achieving proactive threshold cryptography. We assume that the secret sharing
scheme is homomorphic.

If (s1,s2,...,81) is a share assignment for the key k and (s},s5,...,s]) is
a uniformly random share assignment for the “key” 0, then (s{,s5,...,s]) =
(s1 + 81,82 + sh,...,8 + s}) is a new share assignment for the same key k.
Assume that one trusts ¢ shareholders. Then ¢ participants, denoted by j, can
each contribute their own random (s, s’ ,...,s},;). This is done in a similar
way as in Section 5.4, however the shares correspond with the “keys” 0. When
working in an Abelian group (see also [38]) and when the secret sharing scheme
is perfect, the resulting share s; = s;+ 3, p s ; will be guaranteed independent
of the original share s;, due to the properties of the one-time-pad [63]. Both s,
and s/ are shares of the same key k.

One should note that the schemes are more complex since each contributing
shareholder needs to prove that his contribution (s, sh, ..., s]) consists of shares
of 0. Also, achieving proactive threshold RSA is more complex (see Section 4.2).

6 Final comments

As mentioned, we did not discuss all aspects of threshold cryptography in this
survey. For example, some threshold cryptoschemes (not cited in this paper)
have some security problems as was pointed out in [51].

Acknowledgment

The author thanks the many researchers with whom he had discussions on the
topic.

References

1. N. Alon, Z. Galil, and M. Yung. Efficient dynamic-resharing “verifiable secret
sharing” against mobile adversary. In P. G. Spirakis, editor, Algorithms — ESA
795, Third Annual Furopean Symposium, Proceedings (Lecture Notes in Computer
Science 979), pp. 523-537. Springer-Verlag, 1995. Corfu, Greece, September 25-27.

2. F. Bao, R. Deng, Y. Han, and A. Jeng. Design and analysis of two basic protocols
for use in ttp-based key escrow. In V. Varadharajan, J. Pieprzyk, and Y. Mu, edi-
tors, Information Security and Privacy, Second Australian Conference, ACISP 97,
(Lecture Notes in Computer Science 1270), pp. 261-270. Springer-Verlag, 1997.
Sydney, NSW, Australia, July 7-9.

3. A. Beimel, M. Burmester, Y. Desmedt, and E. Kushilevitz. Computing functions
of a shared secret. Manuscript, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive

proofs: How to remove intractability assumptions. In Proceedings of the twentieth
annual ACM Symp. Theory of Computing, STOC, pp. 113-131, May 2-4, 1988.
J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret.
In A. Odlyzko, editor, Advances in Cryptology, Proc. of Crypto 86 (Lecture Notes
in Computer Science 263), pp. 251-260. Springer-Verlag, 1987. Santa Barbara,
California, U.S.A.; August 11-15.

S. R. Blackburn, M. Burmester, Y. Desmedt, and P. R. Wild. Efficient multi-
plicative sharing schemes. In U. Maurer, editor, Advances in Cryptology — Eu-
rocrypt ’96, Proceedings (Lecture Notes in Computer Science 1070), pp. 107-118.
Springer-Verlag, 1996. Zaragoza, Spain, May 12-16.

G. R. Blakley. Safeguarding cryptographic keys. In Proc. Nat. Computer Conf.
AFIPS Conf. Proc., pp. 313-317, 1979. vol.48.

D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In B. S.
Kaliski, editor, Advances in Cryptology — Crypto ’97, Proceedings (Lecture Notes
in Computer Science 1294), pp. 425-439. Springer-Verlag, 1997. Santa Barbara,
California, U.S.A.; August 17-21.

C. Boyd. Some applications of multiple key ciphers. In C. G. Giinther, editor,
Advances in Cryptology, Proc. of Eurocrypt 88 (Lecture Notes in Computer Science
330), pp. 455-467. Springer-Verlag, May 1988. Davos, Switzerland.

C. Boyd. Digital multisignatures. In H. Beker and F. Piper, editors, Cryptogra-
phy and coding, pp. 241-246. Clarendon Press, 1989. Royal Agricultural College,
Cirencester, December 15-17, 1986.

M. Burmester. Homomorphisms of secret sharing schemes. In U. Maurer, editor,
Advances in Cryptology — Furocrypt ’96, Proceedings (Lecture Notes in Computer
Science 1070), pp. 96-106. Springer-Verlag, 1996. Zaragoza, Spain, May 12-16.
J. Camenish and M. Stadler. Efficient group signature schemes for large groups.
In B. S. Kaliski, editor, Advances in Cryptology — Crypto ’97, Proceedings (Lec-
ture Notes in Computer Science 129/4), pp. 410-424. Springer-Verlag, 1997. Santa
Barbara, California, U.S.A., August 17-21.

D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure pro-
tocols. In Proceedings of the twentieth annual ACM Symp. Theory of Computing,
STOC, pp. 11-19, May 24, 1988.

D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Advances
in Cryptology, Proc. of Eurocrypt ’91 (Lecture Notes in Computer Science 547),
pPp- 257-265. Springer-Verlag, April 1991. Brighton, U.K.

L. Chen, D. Gollmann, and C. Mitchell. Key escrow in mutually mistrusting
domains. In M. Lomas, editor, Security Protocols (Lecture Notes in Computer
Science 1189), pp. 139-153. Springer-Verlag, 1997. Cambridge, United Kingdom
April 10-12, 1996.

C. Cocks. Split knowledge generation of RSA paremeters. Presented at the 6th
IMA Conference on Coding and Cryptography, Cirencester, England, to appear in
the proceedings, December 17-19, 1997.

R. A. Croft and S. P. Harris. Public-key cryptography and re-usable shared secrets.
In H. Beker and F. Piper, editors, Cryptography and coding, pp. 189-201. Clarendon
Press, 1989. Royal Agricultural College, Cirencester, December 15-17, 1986.

G. I. Davida, R. DeMillo, and R. Lipton. Protecting shared cryptographic keys. In
Proceedings of the 1980 Symposium on Security and Privacy, pp. 100-102. IEEE
Computer Society, April 1980. IEEE Catalog No. 80 CH1522-2.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function se-
curely. In Proceedings of the twenty-sizth annual ACM Symp. Theory of Computing
(STOC), pp. 522-533, May 23-25, 1994. Montréal, Québec, Canada.

Y. Desmedt, G. Di Crescenzo, and M. Burmester. Multiplicative non-abelian shar-
ing schemes and their application to threshold cryptography. In J. Pieprzyk and
R. Safavi-Naini, editors, Advances in Cryptology — Asiacrypt ’94, Proceedings
(Lecture Notes in Computer Science 917), pp. 21-32. Springer-Verlag, 1995. Wol-
longong, Australia, November/December, 1994,

Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor, Ad-
vances in Cryptology — Crypto ’89, Proceedings (Lecture Notes in Computer Sci-
ence 435), pp. 307-315. Springer-Verlag, 1990. Santa Barbara, California, U.S.A.,
August 20-24.

Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures.
In J. Feigenbaum, editor, Advances in Cryptology — Crypto ’91, Proceedings (Lec-
ture Notes in Computer Science 576), pp. 457-469. Springer-Verlag, 1992. Santa
Barbara, California, U.S.A., August 12-15.

Y. Desmedt and S. Jajodia. Redistributing secret shares to new access structures
and its applications. Tech. Report ISSE-TR-97-01, George Mason University, July
1997. ftp://isse.gmu.edu/pub/techrep/97_01_jajodia.ps.gz.

Y. G. Desmedt. Threshold cryptography. Furopean Trans. on Telecommunications,
5(4), pp. 449-457, July-August 1994. (Invited paper).

Y. G. Desmedt and Y. Frankel. Homomorphic zero-knowledge threshold schemes
over any finite abelian group. SIAM Journal on Discrete Mathematics, 7(4),
pp- 667679, November 1994.

Y. Desmedt. Society and group oriented cryptography : a new concept. In
C. Pomerance, editor, Advances in Cryptology, Proc. of Crypto 87 (Lecture Notes
in Computer Science 293), pp. 120-127. Springer-Verlag, 1988. Santa Barbara,
California, U.S.A.; August 16-20.

Y. Desmedt. Threshold cryptography. In W. Wolfowicz, editor, Proceedings of the
8rd Symposium on: State and Progress of Research in Cryptography, pp. 110-122,
February 15-16, 1993. Rome, Italy, invited paper.

Y. Desmedt. Extending Reed-Solomon codes to modules. In Proceedings 1995 IEEE
International Symposium on Information Theory, p. 498, Whistler, BC, Canada,
September 17-22, 1995.

Y. Desmedt and Y. Frankel. Perfect zero-knowledge sharing schemes over any finite
Abelian group. In R. Capocelli, A. De Santis, and U. Vaccaro, editors, Sequences
II (Methods in Communication, Security, and Computer Science), pp. 369-378.
Springer-Verlag, 1993. Positano, Italy, June 17-21, 1991.

Y. Desmedt, Y. Frankel, and M. Yung. Multi-receiver / multi-sender network
security: efficient authenticated multicast/ feedback. In IEEE INFOCOM ’92,
Eleventh Annual Joint Conference of the IEEE Computer and Communications
Societies, pp. 2045—2054, Florence, Italy, May 4-8, 1992. .

W. Diffie and M. E. Hellman. New directions in cryptography. IEEFE Trans.
Inform. Theory, IT-22(6), pp. 644-654, November 1976.

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory, 31, pp. 469-472, 1985.

Y. Frankel. A practical protocol for large group oriented networks. In J.-J.
Quisquater and J. Vandewalle, editors, Advances in Cryptology, Proc. of Euro-
crypt ’89 (Lecture Notes in Computer Science 434), pp. 56-61. Springer-Verlag,
1990. Houthalen, Belgium, April 10-13.

34

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

Y. Frankel and Y. Desmedt. Parallel reliable threshold multisignature. Tech.
Report TR-92-04-02, Dept. of EE & CS, Univ. of Wisconsin-Milwaukee, April
1992. ftp://ftp.cs.uwm.edu/pub/tech_reports/desmedt-rsa-threshold_92.ps.

Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal resilience proac-
tive public key cryptosystems. In 38th Annual Symp. on Foundations of Computer
Science (FOCS). IEEE Computer Society Press, October 20-22, 1997. Miami
Beach, Florida, U.S.A.

Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive RSA. In B. S.
Kaliski, editor, Advances in Cryptology — Crypto ’97, Proceedings (Lecture Notes
in Computer Science 1294), pp. 440-454. Springer-Verlag, 1997. Santa Barbara,
California, U.S.A., August 17-21.

Y. Frankel, P. Gemmell, and M. Yung. Witness-based cryptographic program
checking and robust function sharing. In Proceedings of the Twenty-Eighth Annual
ACM Symp. on Theory of Computing, pp. 499-508, May, 22-24, 1996.

Y. Frankel, Y. Desmedt, and M. Burmester. Non-existence of homomorphic gen-
eral sharing schemes for some key spaces. In E. F. Brickell, editor, Advances in
Cryptology — Crypto 92, Proceedings (Lecture Notes in Computer Science 740),
pp- 549-557. Springer-Verlag, 1993. Santa Barbara, California, U.S.A., August 16—
20.

Z. Galil; S. Haber, and M. Yung. Minimum-knowledge interactive proofs for deci-
sion problems. SIAM J. Comput., 18(4), pp. 711-739, August 1989.

C. Gehrmann and Y. Desmedt. Truly anonymous secret sharing. Manuscript.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient sharing
of RSA functions. In N. Koblitz, editor, Advances in Cryptology — Crypto 96,
Proceedings (Lecture Notes in Computer Science 1109), pp. 157-172. Springer-
Verlag, 1996. Santa Barbara, California, U.S.A., August 18-22.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signa-
tures. In U. Maurer, editor, Advances in Cryptology — Eurocrypt '96, Proceedings
(Lecture Notes in Computer Science 1070), pp. 3564-371. Springer-Verlag, 1996.
Zaragoza, Spain, May 12-16.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth annual ACM Symp. Theory of Computing, STOC,
pp- 218-229, May 25-27, 1987.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1), pp. 186—208, February 1989.

A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing. In
D. Coppersmith, editor, Advances in Cryptology — Crypto 95, Proceedings (Lec-
ture Notes in Computer Science 963), pp. 339-352. Springer-Verlag, 1995. Santa
Barbara, California, U.S.A., August 27-31.

M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structures. In Proc. IEEE Global Telecommunications Conf., Globecom’87, pp. 99—
102. IEEE Communications Soc. Press, 1987.

N. Jacobson. Basic Algebra I. W. H. Freeman and Company, New York, 1985.

E. D. Karnin, J. W. Greene, and M. Hellman. On secret sharing systems. [EFE
Tr. Inform. Theory, 29(1), pp. 35-41, January 1983.

K. Kurosawa and D. Stinson, June 1996. Personal communication.

S. K. Langford. Threshold DSS signatures without a trusted party. In D. Copper-
smith, editor, Advances in Cryptology — Crypto ’95, Proceedings (Lecture Notes
in Computer Science 963), pp. 397-409. Springer-Verlag, 1995. Santa Barbara,
California, U.S.A.; August 27-31.

51

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.

62.

63.

64

S. K. Langford. Weaknesses in some threshold cryptosystems. In N. Koblitz, editor,
Advances in Cryptology — Crypto ’96, Proceedings (Lecture Notes in Computer
Science 1109), pp. 74-82. Springer-Verlag, 1996. Santa Barbara, California, U.S.A.,
August 18-22.

C. Li, T. Hwang, and N. Lee. Threshold-multisignature schemes where suspected
forgery implies traceability of adversarial shareholders. In A. De Santis, editor,
Advances in Cryptology — Furocrypt ’94, Proceedings (Lecture Notes in Computer
Science 950), pp. 194-204. Springer-Verlag, May 9-12, 1995. Perugia, Italy, May
9-12.

F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes.
North-Holland Publishing Company, 1978.

R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.
Comm. ACM, 24(9), pp. 583-584, September 1981.

A. Menezes, P. van Oorschot, and S. Vanstone. Applied Cryptography. CRC, Boca
Raton, 1996.

R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proceedings
of the 10-th Annual ACM Symp. on Principles of Distributed Computing, pp. 51—
60, August 19-21, 1991. Montreal, Quebec, Canada.

T. P. Pedersen. A threshold cryptosystem without a trusted party. In D. W.
Davies, editor, Advances in Cryptology, Proc. of Eurocrypt ’91 (Lecture Notes in
Computer Science 547), pp. 522-526. Springer-Verlag, April 1991. Brighton, U.K.
G. J. Popek and C. S. Kline. Encryption and secure computer networks. ACM
Computing Surveys, 11(4), pp. 335-356, December 1979.

T. Rabin. A simplified approach to threshold and proactive RSA. Manuscript.

I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. STAM
Journal on Applied Mathematics, 8, pp. 300-304, 1960.

M. K. Reiter and K. P. Birman. How to securely replicate services. ACM Trans-
actions on programming languages and systems, 16(3), pp. 986-1009, 1994.

A. Shamir. How to share a secret. Commun. ACM, 22, pp. 612-613, November
1979.

C. E. Shannon. Communication theory of secrecy systems. Bell System Techn.
Jour., 28, pp. 656715, October 1949.

D. R. Stinson. Cryptography: Theory and Practice. CRC, Boca Raton, 1995.

