
Padframe Generator for Qflow

Philipp Gühring

Vienna, Austria
pg@futureware.at

Biography

Philipp is a software developer with a strong background in
security and cryptography. He is currently learning
microelectronics.

Abstract

An opensource padframe generator was developed on the
efabless platform for usage with the Open-Source Qflow
Digital Synthesis Flow, for digital logic chips in the X-FAB
XH018, 180nm process.

Keywords: Qflow; padframe generator; efabless; X-
Fab; 180nm; toplevel routing; OpenGalaxy; verilog

Introduction

Qflow[2] is a toolflow that currently supports synthesizing,
placing, routing, and LVS and DRC checking a core. The
padframe generation and toplevel routing wasn’t automated
by Qflow yet, and had to be done manually. This padframe
generator automates the padframe generation, and leaves
only the toplevel routing as the final manual step for now.
During the webinar[1] about Qflow, where one can learn how
to design chips on the efabless[3] platform, I found the
manual way to build a padframe too tiresome, so I automated
it.

Approach

To use the padframe generator, the first step is synthesize,
place and route the core completely with Qflow in an
OpenGalaxy project.

 The next step is to create a new project for the whole chip,

edit the layout in magic, add a fully generated single core
from the other project beneath your home directory, and save
it as a .mag file in the current directory. Then you run the
generator, which generates a pad-frame for all the pins in the
referenced design:

Open magic again, and include the generated padframe.mag,
align them and do the toplevel routing:

Image 1: Core generated by Qflow

Image 2: generated Padframe

Image 3: manual Toplevel routing

The first step of the padframe generator is to collect the
requirements for the padframe. It extracts the inputs and
outputs from the comp.json file that is generated by the
Qflow tool and referenced in the current project. Based on
the names of the signals, the generator guesses the function
and uses appropriate pad frame cells from the cell library
provided by X-FAB[4]:

For example, “out” signals are using the BT4F cell, “gpio”
signals are using the BBCUD4F cell, input signals are using
the ICF cell. In case of an odd number of signals, the
padframe generator automatically adds a FILLER84F cell to
fill up the padframe and make it an even number. For the
supply voltages, both a 3.3V and 1.8V and a ground pad are
needed and automatically added by the generator where
necessary.
For designs with lots of logic and only few input output
signals, the padframe generator can be parameterized to add

a number of FILLER84F cells after every signal pad cell, to
make sure that the resulting padframe is large enough to
contain the generated die and top-level routes within the
padframe.

Placement
The placement engine starts at the 0/0 coordinates, and
whenever a quarter of the cells is placed, is places a corner
cell and rotates by 90°. It places the cells, and additionally
places large text labels naming the signal name in the center
of the pads, which should help to get an overview, and
smaller text labels at the center of the inside borders, which
help to identify the signals for connecting them during
toplevel routing. If the number of pads is divisable by 4, the
resulting padframe will be quadratic, otherwise it will be
rectangular.

Outputs
The padframe generator generates both a Magic
padframe.mag file, which contains the cells with their
position and the text labels, and a toplevel.v verilog netlist
file, which should be usable for LVS checks.

As a future extension, it is planned to generate the
configuration for a routing tool to do the toplevel routing
afterwards.

Image 4: Completed chip with core + padframe +

toplevel routing

TABLE I
signal name mapping to pad frame cells and verilog types

padname XH018 Verilog Text

QVDD3V3 VDDORPADF input real 3.3V core voltage

VDD VDDPADF input real 1.8V core voltage

VCC VDDIPADF input real

GND GNDORPADF input real 0V ground

RESET,

RST

ICF input reset signal input

OUT BT4F output Output signals

GPIO BBCUD4F inout GPIOs

Image 6: Output from padframe generator

Image 5: larger padframe with 1 filler per pad

Room for improvements
• The first version of the padframe generator was

developed in Perl due to timing constraints. For
newer versions, Python would be preferred, for
better integration into qflow.

• Enhancing the padframe generator to generate
padframes for multiple cores inside the chip

• Capability to let the user influence the
positioning/order of the pads

• Capability to let the user override the guesses which
pads are necessary for the signals

• Automatically derive the amount of necessary filler
pads for the size of the core so that there is enough
space inside the padframe for the core

• Adaptation to other cell libraries / process nodes

References

[1] Webinar for using Qflow: https://www.udemy.com/vsd-
soc-design-of-the-picorv32-riscv-micro-processor/

[2] Qflow software: http://opencircuitdesign.com/qflow/index.html
[3] Efabless Design platform: https://efabless.com/
[4] XH018 Datasheet: https://www.xfab.com/fileadmin/X-

FAB/Download_Center/Technology/Datasheet/XH018_Datash
eet.pdf

https://www.xfab.com/fileadmin/X-FAB/Download_Center/Technology/Datasheet/XH018_Datasheet.pdf
https://www.xfab.com/fileadmin/X-FAB/Download_Center/Technology/Datasheet/XH018_Datasheet.pdf
https://www.xfab.com/fileadmin/X-FAB/Download_Center/Technology/Datasheet/XH018_Datasheet.pdf
https://www.udemy.com/vsd-soc-design-of-the-picorv32-riscv-micro-processor/
https://www.udemy.com/vsd-soc-design-of-the-picorv32-riscv-micro-processor/
http://opencircuitdesign.com/qflow/index.html
https://efabless.com/

